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Abstract: Cover crops (CC)s are increasingly employed by farmers in olive groves. Spontaneous
soil cover is the most commonly used CC. Its continuous utilization changes ruderal flora. It is
necessary to study new CCs. Living CCs provide C and nutrients to soil during decomposition.
Information on this issue in olive groves is scarce. A 4-year field study involving grab sampling of
Brachypodium distachyon, Sinapis alba and spontaneous CC residues was conducted to study C and
nutrient release from cover crop residues. Throughout the decomposition cycles, C, N and P release
accounted for 40 to 58% of the C, N and P amounts in the residues after mowing. Most K was released
(80–90%). Expressed in kg per hectare, the release of C and N in Brachypodium (C: 4602, N: 181, P: 29,
K: 231) and Sinapis (C: 4806, N: 152, P: 18, K: 195) was greater than that in spontaneous CC (C: 3115,
N: 138, P: 21, K: 256). The opposite results were observed for K. The Rickman model, employed to
estimate the amount of C, N and P in residues, yielded a good match between the simulated and
measured values. In comparison to spontaneous CC, the newly proposed CCs have a higher potential
to provide soil with C and N.

Keywords: cover crops; olive grove; decomposition model; nutrient release; nitrogen; carbon;
phosphorus; potassium; Sinapis alba; Brachypodium distachyon

1. Introduction

The Mediterranean basin accounts for 95% of the global area of olive (Olea europaea L.) trees [1].
It is the main tree species among those cultivated in the Mediterranean area and dominates its rural
landscape [2]. Spain has the highest production and surface area in the world, with 2.73 Mha [3],
and over 60% of the olive production in the European Union. This production has continued to grow
over the last 20 years. Andalusia has 1.63 Mha of olive groves [3], so the importance of this crop in this
region is highly significant.

The Mediterranean climate is characterized by very hot and dry summers and a gap in precipitation
in this season; moreover, the inter-annual and intra-annual variability in rainfall is high, with droughts
and intense rainfall events [4]. Olive trees are well adapted to these conditions and are not particularly
demanding in terms of water and nutrients. For this reason, they have been cultivated traditionally in
marginal areas of low fertility, steep slopes and shallow soils [5].
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Olive trees are planted leaving an unprotected alley between them to let their roots capture water
and nutrients in the soil. Their canopy normally provides less than 35% of soil cover in conventional
plantations [6,7]. To prevent any competition for nutrients with other plants and since olive trees are
mostly rainfed, farmers usually control weeds by tillage [8].

Such tillage has accelerated soil organic matter losses and has disrupted the soil structure,
increasing erosion [9]. Mediterranean soils are susceptible to degradation due to the reduction in
organic matter [10]. Organic matter is essential for soil fertility and it improves soil structure [11].

The introduction of alternative soil-management practices, such as spontaneous or cultivated
cover crops (CC)s along the inter-rows of olive trees, has proven to be an efficient tool to reduce erosion,
runoff and soil fertility loss [6,12–14]. Gramineous species were initially recommended to farmers
because of their good ground protection, relatively low competition with olive trees and easy use and
control [15].

Nevertheless, most olive growers use spontaneous vegetation due to economic savings in seed.
In 2018, 92% of the Spanish olive grove areas with any type of CC had a spontaneous CC [16] that was
occasionally combined with mulch cover of pruning residues, which are durable, protect the soil and
enhance soil fertility [17–20]. However, the continued use of the same CC produces a change in ruderal
flora. This drawback can make CC management harder for farmers in the medium term. One option
is to use multispecies mixes [21]. However, this kind of CC requires very careful management by
the farmer because the species that make up the CC have different growth cycles and responses to
herbicides or mowing.

Thus, Alcántara et al. [22] suggested the use of an interannual rotation of CCs, where each CC
can fulfil a different and complementary role. Two species being studied for use in Andalusian olive
groves are Brachypodium (Brachypodium distachyon L. Beauv. (Poaceae)) and mustard (Sinapis alba L.
subsp. mairei (H. Lindb. Fil.), hereafter referred to as Sinapis or common mustard). These two species
have very different characteristics. Brachypodium is a short-cycle grass. Its main role is the control
of soil erosion since it has a great potential to produce a high biomass amount. This CC has been
recently studied for its use in vineyards in Spain [23]. On the other hand, Sinapis and other crucifer
species have multiple benefits, such as the control of soil compaction due to its tap root [24], control of
Verticillium dahliae [25] and soil loss reduction [26]. Unlike grass and spontaneous vegetation, Sinapis is
sown yearly to ensure good nascence.

CCs can play an important role in increasing soil organic matter and soil nutrients. In this sense,
farm strategies should maximize crop residue return to the soil to enhance its quality [27]. There is very
scarce information on the nutrient release from aboveground residues during the decomposition of CCs
in olive groves. Research on nutrient release has usually been performed in arable crops with no-till
systems [28,29]. Some works have considered only the living stage of CCs [30]. It seems insufficient to
assess nutrient recycling since nutrients retained by CCs will be available in the decomposition period
after mowing [31]. Gómez-Muñoz et al. [32] compared nutrient release from legumes and ruderal
species in a one-year study period in an olive grove, but crucifers or grass CCs were not tested. There is
a clear lack of information regarding nutrient release in these newly and recently proposed cover crops,
such as Brachypodium and Sinapis. Similarly, since intra-annual conditions can change substantially,
it is necessary to properly characterize nutrient release from Brachypodium and Sinapis in a multi-year
study, as in this case.

Additionally, studies on decomposition are usually performed in the laboratory or in the field
with the mesh bag technique. However, as reported by Ruffo and Bollero [33], a more realistic method
is needed. In fact, litterbags have three main problems. First, they alter the microclimate of the residues.
Second, litterbags modify access to the residues of the decomposers. In this sense, Tian et al. [34]
obtained a positive correlation between mesh size and decomposition rate. Third, litterbags put a
fraction of the residues in contact with the soil. Under natural conditions, part of the residues would
be standing [35]. For the abovementioned reasons, Bokhorst and Wardle [36] indicated that using
litterbags could disturb the decomposition process in residues in comparison with residues laying
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directly on the surface under natural conditions. Grab sampling, used in this study, involves a more
realistic situation even though it involves more field work and greater variability in the obtained data
due to natural field variation at short distances [37,38].

Decomposition characterization is important for the sustainable management of a field, especially in
conservation agriculture. Residue decomposition can be described through modelling, which considers
the main biotic and abiotic parameters that influence the process, such as soil moisture, C/N ratio,
air temperature and N concentration in the residues [39–41]. The model of Douglas and Rickman [39]
and the model of Rickman et al. [40]—referred to here as the Rickman model—are based on first-order
decay equations and have a low data requirement. Both have proven to be useful to predict residue
decomposition under Mediterranean conditions [42,43], as well as in a wide range of climates [44].
These models are currently used alone or as part of more complex soil models [41,45,46].

Modelling the C, N, P and K release of the residues of a proposed CC can help us to determine its
capacity to provide these elements to the soil. Additionally, knowledge of nutrient release, in addition to
the variation in the residue density in a field, could be useful to design management zones in the future
to implement on-site nutrient applications [47]. The purpose of this research was to test the hypothesis
that the residues of these newly proposed CCs can release more C, N, P and K amounts than the
spontaneous CC, and to check if nutrient release can be accurately characterized with simple models.

The aims of this study were (i) to assess the C, N, P and K release in a 4-year field study from newly
proposed species (Sinapis alba and Brachypodium distachyon) that could be potentially recommended in
the short term as CCs in olive groves and from controlled spontaneous vegetation as a control and
(ii) to evaluate a decomposition model, determining its predictive ability to ascertain C, N, P and K
release from the studied CC residues.

2. Materials and Methods

2.1. Site and Experimental Design

The experiments were conducted at the Arenillas rainfed Picual olive grove farm in Fernán Núñez
(Córdoba, Spain) during four growing seasons (2008–2011). The plot was located at 37◦40′1.53” N,
4◦47′ W and 266 m above mean sea level. It had an 11% average slope. The soil was a Vertic
haploxerept [48], whose main physicochemical characteristics are shown in Table 1.

Table 1. Physicochemical characteristics of the soil.

Depth
(cm)

Sand
(%)

Silt
(%)

Clay
(%)

OM
(%)

CO3
= (%) N (%) P

(mg kg−1)
K

(mg kg−1)
CEC

(molc kg−1)
pH

(H2O)
pH

(CaCl2)

0–10 6.0 43.5 50.5 0.85 29.9 0.04 6.5 326.2 0.24 8.1 7.7
10–20 9.8 39.4 50.8 0.72 28.5 0.03 13.6 369.5 0.22 8.2 7.7
20–40 8.4 41.7 49.9 0.65 31.8 0.02 9.9 271.8 0.23 8.3 7.7
40–60 8.8 41.8 49.4 0.58 33.1 0.02 11.0 209.7 0.22 8.4 7.7

OM: Organic matter; N: Total nitrogen; P: Available phosphorus; K: Exchangeable potassium; CEC: Cation
exchange capacity.

This area has a typical Mediterranean climate, with three to five hot and dry months (June to
September). Rainfall and daily temperature data were recorded during the four years of the study
(Figure 1) at a weather station belonging to the agricultural weather station network (RIA) of the
Consejería de Agricultura y Pesca (Junta de Andalucía).

The olive trees were eighteen years old and were planted at a distance of 8 m between the rows
and 4 m between trees in the row. A randomized complete block design with five replications and four
subsamples per experimental unit was adopted. The blocks were arranged perpendicularly to the
slope. The experimental unit was a CC strip of 12 m × 4 m.
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Figure 1. Monthly rainfall and monthly average temperature in the research area from May 2008 to 
September 2011. 

The olive trees were eighteen years old and were planted at a distance of 8 m between the rows 
and 4 m between trees in the row. A randomized complete block design with five replications and 
four subsamples per experimental unit was adopted. The blocks were arranged perpendicularly to 
the slope. The experimental unit was a CC strip of 12 m × 4 m. 

Three CCs were employed in the field trials. The first CC was Brachypodium distachyon L., a 
sown-grass CC commercially called Vegeta, while the second CC was the cruciferous species Sinapis 
alba L. subsp. mairei (H. Lindb. Fil.), commonly called maire or common mustard, which was also 
sown. The third CC was spontaneous cover of typical ruderal plants of the area, mainly consisting of 
Malva spp., Convolvulus arvensis L., Linaria vulgaris Mill., Diplotaxis virgata (Cav.) DC., Picris echioides 
L., Melilotus indica (L.) All., Medicago polymorpha L., Lolium rigidum L. and Taraxacum officinale (L.) 
Weber. 

Depending on the yearly weather conditions, the autumn sowing dates were from mid-October 
to late November (Table 2). Common mustard seeds were previously collected from spontaneous 
wild populations and were replicated in the Andalusia Research Centre IFAPA Alameda del Obispo 
(Córdoba, Spain). Cruciferous seeds were broadcasted yearly over the plot at rates of 10 kg ha−1 
without deep burying to improve emergence [22]. Every year, a disc-harrow pass prepared the 
seedbed just before the sowing of the crucifer and buried the remaining residues after each 
decomposition cycle.

Figure 1. Monthly rainfall and monthly average temperature in the research area from May 2008 to
September 2011.

Three CCs were employed in the field trials. The first CC was Brachypodium distachyon L.,
a sown-grass CC commercially called Vegeta, while the second CC was the cruciferous species
Sinapis alba L. subsp. mairei (H. Lindb. Fil.), commonly called maire or common mustard, which was
also sown. The third CC was spontaneous cover of typical ruderal plants of the area, mainly consisting of
Malva spp., Convolvulus arvensis L., Linaria vulgaris Mill., Diplotaxis virgata (Cav.) DC., Picris echioides L.,
Melilotus indica (L.) All., Medicago polymorpha L., Lolium rigidum L. and Taraxacum officinale (L.) Weber.

Depending on the yearly weather conditions, the autumn sowing dates were from mid-October
to late November (Table 2). Common mustard seeds were previously collected from spontaneous
wild populations and were replicated in the Andalusia Research Centre IFAPA Alameda del Obispo
(Córdoba, Spain). Cruciferous seeds were broadcasted yearly over the plot at rates of 10 kg ha−1

without deep burying to improve emergence [22]. Every year, a disc-harrow pass prepared the seedbed
just before the sowing of the crucifer and buried the remaining residues after each decomposition cycle.

Brachypodium was only sown the first year at a rate of 100 kg ha−1 of commercial product,
equivalent to 30 kg seeds ha−1, following commercial recommendations. A disc-harrow plough pass
was employed at the beginning of the experiment (Table 2). After the first year, Brachypodium was
established from a CC strip that had been left alive the first year to sow itself in the following seasons.

The fertilization on the farm consisted of 200 kg ha−1 of urea (46% N) spread in February every
year. The experimental plots were not fertilized with P and K during the 4-year study period. The area
under the canopy was treated with systemic herbicide to control the weeds. CCs were mowed with a
commercial mower at a mean cutting height of 5 cm.
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Table 2. Operations carried out in the experimental field.

Year Date
Operations

Brachypodium Sinapis Spontaneous
Soil Cover

1 22/10/07
Disc harrow

Sowing
Drag tine harrow

Disc harrow
Sowing

Drag tine harrow
Disc harrow

31/03/08 Mowing Mowing Mowing
07/05/08 Mowing Mowing Mowing

2 25/11/08 †

Disc harrow
Sowing

Drag tine harrow
†

03/04/09 Mowing Mowing Mowing
07/05/09 Mowing Mowing Mowing

3 30/11/09 †

Disc harrow
Sowing

Drag tine harrow
†

24/03/10 Mowing Mowing Mowing
03/05/10 Mowing Mowing Mowing

4 04/11/10 †

Disc harrow
Sowing

Drag tine harrow
†

22/03/11 Mowing Mowing Mowing
10/05/11 Mowing Mowing Mowing

†: self-seeding.

2.2. Sampling Scheme

Samplings were conducted every year after mowing the CCs. From that date forward to the
autumn sowing in the new growing season, residues were periodically sampled (Table 3). The residue
mass was estimated from the stubble collected in a 0.25-m2 metal frame, which served to delimit
the sampling area. Four random residue-collection points were established per experimental unit.
The residue collected was sent to the laboratory where it was washed with distilled water to prevent
contamination in the subsequent analysis. Then, it was placed in an oven at 65 ◦C until it reached a
constant weight, and it was possible to estimate the amount of dry matter.

Table 3. Sampling dates in the studied cover crops.

Species Year Dates

Brachypodium 1 13/05/08 03/06/08 27/06/08 11/07/08 28/08/08 25/09/08 16/10/08
2 11/05/09 09/06/09 25/06/09 16/07/09 16/09/09 29/10/09
3 10/05/10 15/06/10 30/07/10 22/09/10 19/10/10
4 15/06/11 22/08/11 13/09/11

Sinapis 1 03/06/08 27/06/08 11/07/08 28/08/08 25/09/08 16/10/08
2 25/06/09 16/07/09 27/08/09 16/09/09 29/10/09
3 10/05/10 15/06/10 30/07/10 24/08/10 22/09/10 19/10/10
4 15/06/11 22/08/11 13/09/11

Spontaneous 1 11/07/08 28/08/08 25/09/08 16/10/08
2 16/07/09 27/08/09 16/09/09 29/10/09
3 10/05/10 15/06/10 30/07/10 22/09/10 19/10/10
4 15/06/11 22/08/11 13/09/11
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2.3. Analysis of Samples

Total C and total N in the residue samples were analysed in a LECO elemental analyser (TRUSPEC,
CNS; St. Joseph, MI, USA). Total P content in the residues was determined by colorimetry and total K
by atomic absorption spectrophotometry, both after converting the sample into ash and dissolving it
in 100 mL hydrochloric acid (HCl) 0.1 N. The determination of soil organic matter was based on the
Walkley-Black method. Total N in soil samples was analysed in the LECO elemental analyser; available
P in soil was measured by colorimetry following the Olsen method, and exchangeable K was measured
by atomic absorption spectrophotometry after extraction with NaHCO3 0.5 M and CH3COONH4 1 M,
respectively. The particle size distribution of the soils was determined by the densimeter method after
dispersion with sodium hexametaphosphate. Soil pH was measured with a glass electrode using a
1:2.5 extractant solution.

2.4. Data Analysis

2.4.1. C, N, P and K Release from Residues

The residual amounts (Mg ha−1) of carbon, nitrogen, phosphorus and potassium remaining at
each aboveground residue sampling were calculated using the product of the dry matter of the residues
by the concentration of the corresponding element on the sampling date.

The C, N, P and K release from the different CC residues was calculated, understanding as such
the difference between the content of this element in the residues when no regrowths were registered
and that estimated in the residue samples collected on the different dates, according to the Equation (1):

Release = yo−yt (1)

where yt (Mg ha−1) is the amount of C, N, P or K remaining in the residue at time t, and yo (Mg ha−1)
is the amount of each element remaining in the first sampling.

2.4.2. C, N and P Modelling

The Rickman model was used to assess the decomposition of the aboveground CC residues.
This model assumes a first-order decay with respect to degree-days, in accordance with the
following Equation:

Mt+1 = Mt exp(−k·fN·fw·fX·fB·DGDt) (2)

with Mt+1 and Mt: residue mass (kg ha−1) in the days t + 1 and t, respectively; DGDt: degree-days on
the day, taken as an average daily temperature (over 0 ◦C), and k is a rate coefficient (◦C−1). The factors
fN and fw consider the amount of initial N in the residue and the effects of the moisture content. For the
calculation of the factor fN, the regression shown in Douglas and Rickman [39] was used:

fN = 0.57 + 0.126[N] (3)

where [N] is the initial N concentration in the residue (g N kg−1), and 0.2 is the value of fW used [44].
fX and fB are a soil texture index and a biomass or residue type factor, respectively. Their values were
set to 1, according to Rickman et al. [40]. The model was also employed to predict the decomposition of
the roots in Brachypodium and Sinapis, with fB = 0.35 and fW = 0.8 [40]. Following Chochois et al. [49],
it was assumed that roots in Brachypodium account for 59% of total dry weight. Regarding Sinapis,
Hajzler et al. [50] reported a root/shoot ratio of 0.32. This value was employed for the modeling.
The concentration of N in the roots was taken as 1.75% in Sinapis [51] and 3% in Brachypodium [52].

Once the Rickman model was calculated, the amount of remaining C in the residue was obtained
from Equation (4):

Residual Ci,t = α + β × Residue amounti,t + εi,t (4)
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where α and β are parameters, Residual Ci,t is the amount of C (kg ha−1) for sample i at instant
t—calculated by multiplying the dry matter amount by its corresponding C concentration—and
Residue amounti,t is the amount of residue (kg ha−1) for sample i at instant t. This approach was used
since the C concentration in the residues was very constant throughout the decomposition cycles.

A relplot [53] was used to detect outliers in Equation (4). Details of the calculation can be found
in Wilcox [54]. Equation (4) was calculated using the least-trimmed-squares (LTS) regression, a robust
statistical criterion for analysing regression data sets [55].

In terms of the N, P and K content in the residues, the prior approach could not be used since
nutrient concentration varied over time. For each sample, the residual amounts of N, P and K were
calculated by multiplying the dry matter amount by the concentration of every element.

For C, N, P and K, we used the 0.2-sample trimmed mean [Equation (5)] as a measurement of
location to more accurately characterize the experimental amount in each sampling period due to the
non-normality and high variability shown by the field data. In these cases, the sample mean estimates
a non-robust measure of location [54].

The procedure to calculate the α-sample trimmed mean is described by Wilcox [54] as follows:
(i) let X1, X2, . . . .., Xn−1, Xn be a random sample and let X(1), X(2), . . . .., X(n−1), X(n) be the observations
written in ascending order; (ii) suppose the desired amount of trimming has been chosen to be α; let k
= [n·α], where [n·α] is the value of n·α rounded down to the nearest integer; (iii) the α-sample trimmed
mean Xα is defined as:

Xα = (X(k+1) + . . . .. + X(n−k))/(n−2k) (5)

with α = 0.2 in our case, thus representing the 0.2-sample trimmed mean.
The scale parameter employed was the standard error of the α-sample trimmed mean.

The procedure to estimate the standard error of a trimmed mean based on a random sample of
n observations is the following [54]: (i) winsorize the observations by transforming the ith observation,
Xi to Wi using the Equation (6); (ii) Compute the sample variance of the Wi values, yielding s2

w,
the winsorized sample variance; (iii) The standard error of the trimmed mean is estimated according to
Equation (7).

Wi =


X(k+1), if Xi ≤ X(k+1)
Xi, if X(k+1) ≤ Xi ≤ X(n−k)
X(n−k), if Xi ≥ X(n−k)

(6)

Var(xα) = sw/[(1−2α)·n0.5] (7)

In order to get an average release rate for N (kN), and P (kP) and thus to characterize the whole
study period, the experimental amounts of N and P were separately pooled and normalised every year.
Later, we fitted a simple exponential model (Equation (8)).

Normalised nutrient t,j+1 (kg ha−1) = Normalised nutrient t,j (kg ha−1) exp(−k·DGDt,j to t,j+1) (8)

where j + 1 is the number of samples in every CC at the year t (t from 1 to 4), DGDt,j to t,j+1 is the total
amount of degree days between the samplings j and j + 1, and k refers to kN, kP.

The decomposition constant k used for every type of CC and nutrient was determined through
non-linear regression, employing the method of Levenberg–Marquardt. The split-sample technique [56]
was used to evaluate the amount of residue predicted by the model both in calibration and
validation. To check whether the simulations of nutrient amounts provided by the models were
satisfactory, measurements (observations) were plotted against time, based on graphical comparison of
model-predicted values with on-field measurements. This method provides a simple and qualitative
way to assess if model predictions match actual data [57]. From a quantitative perspective, the efficiency
of the different models was quantified using the coefficient of efficiency (E) of Nash and Sutcliffe [58]
[Equation (9)] and the Pearson’s linear correlation coefficient (rxy) between simulated and observed
values for every species throughout the sampling period. Additionally, the coefficient of residual mass
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(CRM) [Equation (10)] was used to indicate a prevalent model overestimation or underestimation of
the observed values [59].

The coefficient of efficiency is defined as:

E = 1 − Σ(Oi−Pi)2/Σ(Oi − Ō)2 (9)

where Oi and Pi are the observed and predicted values in any sampling period, respectively. CRM is
calculated as:

CRM = (ΣOi − ΣPi)/ΣOi (10)

The values considered to be optimal for these criteria are 1 for rxy and E and 0 for CRM. Following
common practice, simulation results are usually considered good for values of E greater than or equal
to 0.75, satisfactory for values of E between 0.75 and 0.36, and unsatisfactory for values below 0.36 [60].

Finally, no fit existed with the K content in the residues since leaching was the dominant process.
For this reason, only the results regarding C, N and P are presented in the modelling.

2.4.3. Statistical Analysis and Software

A two-way analysis of variance with a blocking factor, five replications and subsampling (n = 4)
was performed for the residue amount to explain the performance of the different CCs. The factors
were type of CC and year (four levels: one through four). To determine decomposition rates (Equation
(8)), non-linear regression was used. Statistical analyses were performed with the software SPSS v.23
(IBM, Armonk, NY, USA) and R [61]. To create the figures, we used Grapher version 12 software.

3. Results and Discussion

3.1. Residue Release of C, N, P, K

Of the three nutrients considered, N presented the highest mean proportion in the first sampling
after mowing in all CCs (Table 4), with very similar mean values for Brachypodium (1.47%), Sinapis
(1.46%) and controlled spontaneous vegetation (1.59%). After N, K was the main element, ranging
between 1.15% (Sinapis) and 1.53% (controlled spontaneous vegetation). Finally, P was the less abundant
element, with very similar percentages in the studied CCs (0.18% to 0.21%). Similarly, the percentages
of C in the CCs were very similar, with values ranging from 39.5% (Brachypodium) to 40.1% (Sinapis).
Carbon content values among herbaceous plants have been reported to be very similar, although, at the
same time, variable among organs of a plant [62].

Table 4. Concentrations of C, N, P and K in the aboveground residues at the beginning of each
decomposition cycle.

Cover Crop Element (%)
Year

1 2 3 4 Average

Brachypodium C 40.8 ± 1.1 41.7 ± 0.8 37.4 ± 3.0 39.7 ± 1.1 39.6 ± 0.4
N 1.9 ± 0.3 1.3 ± 0.1 1.6 ± 0.5 1.1 ± 0.3 1.5 ± 0.1
P 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.0 0.2 ± 0.0
K 1.6 ± 0.5 1.6 ± 0.8 0.9 ± 0.9 0.6 ± 0.2 1.2 ± 0.1

Sinapis C 41.5 ± 1.2 41.8 ± 1.9 38.4 ± 1.4 38.5 ± 1.7 40.1 ± 0.3
N 1.2 ± 0.3 1.3 ± 0.2 2.2 ± 0.4 1.2 ± 0.2 1.5 ± 0.1
P 0.1 ± 0.0 0.1 ± 0.0 0.3 ± 0.1 0.2 ± 0.0 0.2 ± 0.0
K 0.5 ± 0.5 0.6 ± 0.2 2.9 ± 1.0 0.5 ± 0.3 1.2 ± 0.2

Spontaneous C 41.3 ± 1.1 40.7 ± 1.4 38.4 ± 1.5 38.4 ± 1.5 39.9 ± 0.3
N 1.4 ± 0.4 1.5 ± 0.4 2.2 ± 0.4 1.2 ± 0.6 1.6 ± 0.1
P 0.1 ± 0.0 0.2 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 0.2 ± 0.0
K 1.9 ± 1.0 1.1 ± 0.5 2.7 ± 1.1 0.3 ± 0.1 1.5 ± 0.2
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The values of N, P and K concentrations in the third year in Sinapis and controlled spontaneous
vegetation were much higher than the corresponding values for the remainder of the study period
(Table 4). Notably, the date of mowing varied among years, depending on CCs development (Table 2).
The analysed vegetal material in the third year was very likely to be less senescent than that in the
remaining years, which could cause the aforementioned differences. This scenario was not observed in
Brachypodium.

The mean C/N values were similar to each other. This ratio influences the decomposition rate of
plant residues [63]. Regarding this issue in the studied CCs, the scientific literature provides limited
information. The mean C/N value for Sinapis was 27.3, in line with the results of Alcántara et al. [22],
who reported a value of 24.7. The mean C/N values for Brachypodium and the controlled spontaneous
vegetation CC were equal to 26.9 and 25.1.

Regarding the aboveground residues, the percentages of the mean C release ranged from 40.5% to
48.3% (Table 5). The percentages of N and P release were higher than that of C in Brachypodium and
controlled spontaneous vegetation. As shown in Table 5, the percentage of N release was very constant,
varying from 45.8 to 47.5%. P release had a higher dispersion, ranging from 42.8% to 57.7%.

Table 5. Percentage of nutrient released per cover crop and year.

Cover Crop Element †
Year

1 2 3 4 Average

Brachypodium C (shoots) 72.4 32.8 29.2 33.2 42.2
C (roots) 58.5 62.4 60.6 42.7 57.0

N 87.5 25.3 28.4 35.2 47.5
P 89.3 59.5 25.0 44.3 57.7
K 96.9 70.6 75.8 73.2 80.8

Sinapis C (shoots) 67.0 41.4 48.2 48.7 48.3
C (roots) 53.6 51.0 59.2 41.5 51.0

N 51.9 23.7 64.4 55.1 45.8
P 51.6 16.4 62.8 47.9 42.7
K 72.4 67.4 95.7 72.0 85.0

Spontaneous C (shoots) 56.5 26.4 59.7 33.5 40.5
N 70.1 23.0 71.9 20.7 46.0
P 82.3 25.5 74.1 35.1 50.8
K 94.6 83.5 96.7 56.9 90.4

† The percentage of nutrient released for N, P and K refers to aboveground residues.

Nevertheless, the percentage of K release was always noticeably higher than that of C, N and
P. The fact that the K release rate was the fastest in the CC residues was mainly because most K
exists in the form of ions and presents high solubility [64]. Thus, K is rapidly released through water
digestion [43,65]. This release is an important contribution for soil and plants. On the other hand, C, N
and P usually form organic compounds, which explain a different release mechanism [28].

The specific meteorological conditions were quite different every season (Figure 1), which had
a significant influence on both the development in the growing stage and the decomposition after
mowing. In the first season, all the CCs had lower biomass in the developing stage than in the second
season. This scenario was reasonable since it was the installation year. Similarly, it is worth mentioning
that an important daily rainfall event of 120 mm occurred in November 2007 in the growing season.
This event caused substantial runoff and moved a proportion of the seeds, which reduced future plant
density. The largest amount of biomass of all CCs was obtained in the second season. In the third
season, excess rainfall in the autumn months, when the species emerged, significantly limited the
growth of Brachypodium.

The carbon and nutrients released by the CCs during the decomposition period are depicted in
Table 6. In comparison to the other CCs, the spontaneous CC had lower C, N and P release in the
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decomposition process. This mainly occurred because the two new tested species produced a greater
amount of aboveground dry matter residue after harvest, with 6691 kg ha−1 yr−1 (Brachypodium),
6171 kg ha−1 yr−1 (Sinapis) and 4839 kg ha−1 yr−1 (weeds). The moisture content (wet weight basis) in
the residues was 48.6%, 30.7% and 33.7% for Brachypodium, Sinapis and weeds, respectively. C release
from roots seems to be much higher in Brachypodium than in Sinapis, which is mainly explained by the
differences in biomass in the developing stage and by the variation in the shoot to root ratio of the
studied CCs.

Table 6. Amount released per cover crop and year, and total amount released along the decomposition
cycles and the whole field experiment.

Cover crop Amount Released
(kg ha−1)

Year

1 2 3 4 Sum † Global ††

Brachypodium C (shoots) 1974 1444.8 435.9 747.9 4602 10886
C (roots) 2354.5 3923.5 1482.1 1461.9 9222 16175

N ††† 108.2 35.0 17.2 21.0 181 382
P 10.0 12.6 1.9 4.3 29 50
K 100.0 90.4 16.8 23.7 231 286

Sinapis C (shoots) 1110.2 1875.5 856.2 964.5 4806 9945
C (roots) 285.6 751.4 371.3 283.9 1692 3316

N 24.2 29.4 65.1 33.8 152 333
P 2.5 2.4 8.7 4.8 18 43
K 10.8 37.1 131.2 16.4 195 230

Spontaneous C (shoots) 516.2 834.9 1251.3 512.8 3115 7694
N 19.9 25.2 83.2 9.5 138 300
P 2.6 3.7 12.7 2.5 21 42
K 42.8 73.6 131.5 7.7 256 283

† Sum of the amounts released in each decomposition cycle. †† Sum of the amounts released in the whole experiment,
from May 2008 to November 2011. ††† The amount of nutrient released in N, P and K refers to aboveground residues.

The residue amount after harvest differed among species (p = 0.008), with the quantity in
Brachypodium being significantly higher than that in the controlled spontaneous vegetation CC,
while Sinapis did not differ significantly from the remaining CCs. It has been reported that spontaneous
CCs usually produce less biomass than sown CCs [66]. However, the amount of K released was
highest for the spontaneous CC in this research, at 256 kg ha−1. This scenario occurred because the K
concentration in spontaneous residues was 33% greater than the K concentration in the Sinapis and
Brachypodium residues (Table 4).

In comparison to the other nutrients, P had the lowest content in the residue, so it was released in a
lower amount. Brachypodium had the greatest P release, with 29 kg ha−1. Although the N concentration
in the residues was always higher than the K concentration, more K was released regardless of the CC
because of its high solubility [67].

It must be highlighted that before sowing, Sinapis residues were buried by a disc harrow,
which could have enhanced nutrient release in the growing stage of the new season [68].
However, Brachypodium and controlled spontaneous vegetation residues were not incorporated.
They gradually decomposed during the following season, thus protecting the soil for a longer
time. Assuming the residue of the previous season decomposes completely before the next mowing,
the total amount of carbon and nutrients released will depend on the maximum biomass reached
during the development period. In a four-season balance, Brachypodium potentially released the largest
amount of carbon and nutrients from a global perspective (Table 6).
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3.2. C, N and P Modelling

The relationship between residual C and aboveground residue amount is expressed in Table 7.
This relationship was used to predict the C amount in the residues since it showed a coefficient of
determination close to one. In all cases, the parameter β, which was equal to the increment in C
amount per unit of increment of residue amount, was very similar. The intercepts were also similar.
This implies a very similar C concentration in these herbaceous residues (Table 4), as reported by
Ma et al. [62].

Table 7. Linear relationship between residual C and aboveground residue amount.

Cover Crop
Parameter

α β

Brachypodium −39.02 0.4128
Sinapis −62.28 0.4238

Spontaneous 1.77 0.3948

Model: Residual Ci,t = α + β × Residue Amounti,t + εi,t. The subscript i,t refers to sample i, measured in instant t.
In all cases, R2 > 0.99; p-value < 10−10.

The relationship between the N and P amount in the residues with respect to the residue amount
(not shown) was also significant but with a higher scatter. For this reason, kN and kP were determined
according to Equation (8). The kN was equal to 0.00014 ◦C−1 for Brachypodium, 0.00026 ◦C−1 for Sinapis
and 0.00021 ◦C−1 for the controlled spontaneous vegetation. Similarly, the kP value was equal to
0.00018 ◦C−1 for Brachypodium, 0.00029 ◦C−1 for Sinapis and 0.00033 ◦C−1 for the controlled spontaneous
vegetation. This result implies that the release rate was, on average, always higher for P than for N.
This was previously observed in pea under no-till farming [43]. Wang et al. [29] indicated that P and K
in straw are released during short-term straw return, while C and N are released during long-term
straw return. In our case, only K was clearly released in the short term.

The abovementioned coefficients kN and kP determined the rate of release. The higher the
coefficient, the faster the element was released. Thus, P release rates were always higher than N release
rates: 29% higher for Brachypodium, 12% for Sinapis, and 57% for the controlled spontaneous vegetation.

The predictions of decomposition according to the Rickman model varied among the different
elements studied. Figures 2–4 show the experimental evolution of the C, N and P amounts in the
aboveground residues throughout the four field campaigns. The figures also depict the results of
the Rickman model with the corresponding adjusted k coefficient and its 95% confidence interval.
Most experimental measurements were within the 95% confidence interval (Figures 2–4), ranging from
65% to 88% for the studied CCs.

The best E values were always obtained for C in all the CCs, ranging from 0.64 to 0.72 (Table 8).
Similarly, the worst E values per CC were obtained for P in all cases, with values ranging between 0.28
and 0.44. The same pattern was shown by the coefficient rxy, as shown in Table 8. This result means
that the C residue amount was the best fitted variable, while P presented the worst fit. We hypothesize
that this scenario could have been partially attributable to easily leachable P compounds [69]. At a
global level, there was a slight overestimation by the models, which was manifested in seven out of the
nine negative values of the CRM coefficient.

Pearson’s linear correlation values between the observed and simulated values ranged between
0.62 and 0.84, with p < 10−5 in all cases (Table 8). The sequence of the values of this coefficient was
always C > N > P. Regarding the coefficient of efficiency and following the criterion of Van Liew and
Garbretch [60], the C, N and P amounts simulated by the Rickman model can be considered satisfactory
(0.36 < E < 0.75) regardless of the CC, with the only exception being P in Brachypodium (E = 0.28).
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Figure 2. Measured and modelled C amounts in aboveground residues during the four decomposition
cycles for spontaneous cover (a), Brachypodium (b) and Sinapis (c). The dashed lines represent estimations
from the Rickman model [40].

Similarly, there was good agreement between the observed and simulated values in all CCs
regarding the mean values (Table 8). The standard deviation of the observed values was always higher
than that of the simulated values. This is logical since the models showed an expected value, i.e.,
a mean value. Nevertheless, the observed values exhibited great field variability.

This is a consequence of the short-distance natural variability in environmental variables [70,71],
which is clearly evident when grab sampling is employed, as was the case here. However, grab
sampling is a more realistic method than litterbags [33] since accessibility of the residues to decomposers
can be limited by mesh openings. In addition, litterbags can alter the microclimate of the residues and
put in contact with the soil some residues that would be standing for a long time period under natural
conditions [36].

The Rickman model here exposed is an improvement of the Douglas–Rickman model, and has
been extensively used with good results in a wide variety of climates and crops to predict decomposition
or to aid in soil carbon modeling [41,43,45,72,73].
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Table 8. Coefficients for model evaluation and statistics obtained in simulations.

Species
Element

C N P

Brachypodium distachyon Coefficient E 0.69 0.38 0.28
CRM −0.02 −0.12 −0.14

Observed values (kg ha−1) Mean 2433 76 8.8
SD 1167 41 5.5

Simulated values (kg ha−1) Mean 2493 85 9.9
SD 898 31 4.7

Correlation rxy
C 0.84 0.67 0.62

Sinapis alba Coefficient E 0.64 0.54 0.37
CRM −0.12 0.08 0.08

Observed values (kg ha−1) Mean 1815 60 7.2
SD 1155 40 5.1

Simulated values (kg ha−1) Mean 2039 55 6.7
SD 1111 29 3.7

Correlation rxy
C 0.83 0.75 0.63

Spontaneous soil cover Coefficient E 0.72 0.50 0.44
CRM −0.10 −0.04 −0.01

Observed values (kg ha−1) Mean 1503 54 6.8
SD 900 39 5.1

Simulated values (kg ha−1) Mean 1647 57 6.7
SD 716 31 4.6

Correlation rxy
C 0.83 0.72 0.70

rxy:: Pearson’s correlation coefficient. C In all cases, correlations were significant, with p < 10−10. E: coefficient of
efficiency. CRM: coefficient of residual mass.

As seen in Figure 5a–c, the overall performance of the model applied to C, N and P is suitable.
The slope is practically one in all cases, and the points are generally near the bisector, especially in the
case of C (Figure 5a). In this element, the linear fit is always under the bisector, since the intercept was
equal to −112 kg ha−1. It is reflected in negative values of CRM (Table 8), ranging from −0.02 to −0.12.
Likewise, the highest coefficient of determination was obtained for C in all CCs, thus reflecting the best
adjustment, which agrees with the highest E and coefficient of correlation for this element in all CCs.
Similarly, the behavior of the model for N and P is also in line with the results in Table 8, with P being
the worst fitted element.
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regression line.

The 95% confidence interval of the slope contained one in C, N and P. Therefore, the use of the
Rickman model to determine C amounts, as well as simple exponential models for N and P, have
proven to be adequate to predict the average C, N and P remaining in the aboveground residues under
Mediterranean conditions.

4. Conclusions

The studied CCs released a large amount of C along the decomposition cycle, ranging from
0.8 Mg ha−1yr−1 to 1.2 Mg ha−1yr−1 in the aboveground residues. The release of C, N and P accounted
for 42 to 57% of the total amount at the beginning of the decomposition cycles. The percentage of K
release was always noticeably higher than that of C, N and P, ranging from 80% to 90% of the total
amount in the CC residues.

The lowest amount of C, N and P released from residues was obtained in the spontaneous CC.
It was mainly because it yielded significantly less residue after harvest than the newly proposed CCs.
The opposite result was obtained for K, as the spontaneous CC increased K release by 11% with respect
to Brachypodium and 31% with respect to Sinapis. Overall, the newly proposed CCs seem to be more
promising for providing C and N to the soil than the spontaneous CC, which is currently the most
used CC by farmers.

Under realistic field conditions, the Rickman model and the exponential model showed a good
performance to predict C, N and P release from aboveground residues, with P being the worst fitted
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element. These findings could help develop better practices under conservation agriculture and
estimate nutrients release in olive groves.
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